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TOWARDS A CUSTOMIZABLE PVS�

GERALD L�UTTGENy, C�ESAR MU~NOZy, RICKY BUTLERz, BEN DI VITOz, AND PAUL MINERz

Abstract. PVS is a state-of-the-art theorem-proving tool developed by SRI International. It is used

in a variety of academic and real-world applications by NASA and ICASE researchers, for whom tool cus-

tomization and extensibility are becoming increasingly important issues. This paper shows, by referring to

past experiences with several projects and case studies, that the customization features currently o�ered by

PVS are often insu�cient. It also suggests several improvements regarding PVS's customization in the short

run and regarding its extensibility in the long run.
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1. Introduction. PVS is a general veri�cation system developed and maintained by the Formal Meth-

ods Group at SRI International [32, 38, 39]. It combines a very rich speci�cation language with a powerful,

interactive theorem prover. The speci�cation language of PVS is based on a classical, but typed, higher-

order logic. The theorem prover integrates decision procedures for several kinds of theories and also allows

one to incorporate user-de�ned proof strategies to automate the proof process as far as possible. NASA

Langley [8, 30] is a long-time user of PVS, whose experiences with the theorem prover show that it is a

well-performing tool, provided that the application under consideration can be tailored to PVS's problem

solving style. Unfortunately, tailoring applications is di�cult in practice, leading to a desire for tool cus-

tomization and extensibility. This desire is shared by researchers at ICASE [19], whose main interest is

the development of new veri�cation technologies, especially heterogeneous techniques combining theorem

proving, model checking, and type checking.

Customization and extensibility issues within formal speci�cation and veri�cation tools, such as PVS,

are becoming increasingly important topics in Formal Methods research and technology transfer. The reason

is that only tools with a high degree of 
exibility and automation can cope with the complexity of today's

digital systems and with the usability requirements imposed by hardware and software engineers. The main

arguments for powerful customization and extensibility within PVS concern aspects of tool integration as

well as tool specialization. A tight integration of PVS with external tools and environments would enable the

use of specialized decision procedures within PVS, such as for model checking various temporal and modal

logics or for reasoning about regular languages. Vice versa, other formal and informal tools for the design

and analysis of digital systems could pro�t from PVS's elegant speci�cation language and from its theorem-
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proving capabilities. However, in order to encourage engineers to apply formal speci�cation and veri�cation

techniques, veri�cation tools must become an integral part of engineering environments, such as UML tools

in software design and VHDL tools in hardware design [7, 21]. Beside this aspect of tool integration, another

desirable feature of veri�cation tools is their specialization to particular problem domains. Naturally, this

breaks down to two issues: (i) the specialization of the prover language in order to allow the interfacing of

di�erent speci�cation languages to the veri�cation tool under consideration, and (ii) the specialization of the

prover itself, e.g., via user-de�ned proof strategies.

This paper �rst gives an overview of the current customization features in PVS. By referring to four case

studies conducted by the authors, it is shown that these features are often insu�cient to tailor PVS to some

interesting academic and real-life applications. In addition, matters regarding extensibility seem to have

been largely ignored during the development of PVS. After a detailed analysis of the underlying issues, this

paper then develops several suggestions on how PVS's customization features can be signi�cantly improved

in the short term. These suggestions concern the mechanism and language for writing proof strategies, as

well as syntactic and semantic aspects of the PVS language. This paper also elaborates on a vision for a

next-generation PVS which asks for tool extensibility, and, thereby, carries the idea of tool customization

one step further. Please note that some of the observations and suggestions made in this paper have also

been reported by other researchers, and that the developers of PVS at SRI International are partially aware

of them for quite some time.

The remainder of this paper is organized as follows. The next section gives an overview of the veri�cation

system PVS and its key components. It also surveys the customization features supported in PVS today.

Section 3 illustrates our past experiences with customization issues in PVS, while Section 4 presents and

discusses several suggestions on how to improve customization. The �nal section contains some remarks on

tool extensibility and our concluding thoughts.

2. PVS: An Overview. The abbreviation PVS stood originally for Prototype Veri�cation System,

as the tool was conceived as a prototype for research on formal veri�cation technology. The design of

PVS was shaped by experience with the development of speci�cation languages and theorem provers in the

late Seventies and in the Eighties. In particular, PVS borrows from an earlier system developed at SRI

International, the EHDM theorem prover [23, 42]. PVS is implemented in Lisp [44] using the Common Lisp

Object System [10] and was �rst publicly released in 1992; the most current release is Version 2.3. Over the

years, PVS matured from a prototype to a robust and powerful formal speci�cation and veri�cation system.

It is used by many researchers and engineers in academic and industrial sites to attack complex problems

in a broad spectrum of application domains [38], including software systems [14], hardware systems [13],

and embedded systems [12]. Aspects under investigation ranged from safety criticality [11], over fault

tolerance [26], to human-computer interaction [22]. The architecture of PVS, schematized in Figure 2.1,

re
ects that PVS is mainly used as an interactive system. The interface to the system has a textual and

command-line form and is built on top of GNU's editor Emacs [43]. At this level, the user writes formal

speci�cations that are then interactively analyzed either by the type checker and the proof checker, or

animated using the ground evaluator.

Formal speci�cations are structured in so-called theories, which correspond to modules in programming

languages [34]. During the initialization of PVS, a special, prede�ned theory, which is referred to as prelude

and includes basic de�nitions, axioms, and propositions, is automatically loaded. A theory is an arrangement

of declarations of mathematical and logical objects, such as types, (higher-order) functions, axioms, and
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Emacs interface

Specification language & prelude theory

Type checker Proof checker Ground evaluator

Fig. 2.1. Schematized architecture of PVS

theorems. Theories can be parameterized by mathematical objects, and they can in turn be imported by

other theories. The speci�cation language of PVS is based on classic higher-order logic, i.e., functions are

�rst-class objects and quanti�cation over general objects is supported. However, the language is enriched with

an expressive type system and also supports operators known from functional programming languages [25],

such as conditionals, local declarations, �rst-class functions, as well as record and function overriding.

The PVS language is strongly typed, i.e., objects need to be explicitly declared with their types [34].

Types supported by the system include reals, rationals, integers, strings, records, tuples, functions, tables,

sets, and abstract data types. The type system also possesses two very powerful features, namely dependent

types and subtypes, which are worth a closer look [41].

� Dependent types, e.g., dependent record types: A record type R having �elds f1; : : : ; fn of types

T1; : : : ; Tn may be declared by R : TYPE = [# f1 : T1; : : : ; fn : Tn #]. Here, each type Ti may

depend on the �elds f1; : : : ; fi�1.

� Subtypes: If T is a type and P a predicate on T , then N : TYPE = fx:T | P(x)g declares a new

type N whose elements belong to the largest subset of elements of type T that satisfy P .

Although subtypes and dependent types are very convenient to write speci�cations, they make type checking

undecidable. PVS copes with this problem by generating type correctness conditions (TCCs), i.e., proposi-

tions that, when discharged by the user, guarantee type consistency. For example, when subtyping is used,

a TCC is generated which states that the introduced subtype must not be empty, i.e., an object of the

considered subtype must exist.

% Existence TCC generated for N: fx:T | P(x)g

X TCC1: OBLIGATION EXISTS (N: fx:T | P(x)g): TRUE;

In practice, TCCs can often be discharged automatically by using proof automation tools provided by the

system. The rich type system enables one to encode partial functions, which are per default not supported in

PVS, by restricting a function's domain appropriately using subtyping. Moreover, the type system also allows

the sound support of recursive functions. More precisely, each recursive function declaration must include

a termination argument. The type checker then generates a TCC stating that the termination argument is

valid, i.e., it gives rise to a well-founded relation.

The proof checker [35] included in PVS is also interfaced to the Emacs editor. It constantly displays the

current proof state in form of a proof sequent. Sequents may then be simpli�ed by inputting proof commands,

which may be considered as basic steps in the proof-construction process. PVS comes with a very rich set

of proof commands that are concerned with equality reasoning, logical reasoning, and arithmetic reasoning.

Basic proof commands deal with, e.g., skolemnization, case-splitting, or simpli�cation. The system also

provides a mechanism for writing proof strategies, i.e., proof scripts which are intended to increase the

degree of automation within the theorem prover [35]. Strategies need to be written in Lisp and may use
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pre-de�ned proof combinators, e.g., choice, sequencing, or iteration. Some interesting proof strategies are

already delivered with PVS, including the strategy tcc specialized at discharging type correctness conditions

and the very powerful strategy grind which combines logical and arithmetic simpli�cations in an intelligent

manner. The proof checker also interfaces with decision procedures external to PVS, such as for temporal

logics [15] and monadic second-order logic [17].

It is worth mentioning a feature which was introduced with the current release of PVS, namely the

ground evaluator [36]. This component allows PVS ground expressions, i.e., executable de�nitions applied to

concrete data, to be evaluated via compilation into Lisp. The e�ciency of the obtained Lisp code crucially

depends on the identi�cation of situations of non-shared access to variables. This is done by static analysis

techniques. Although ground evaluation is a �rst step towards animating speci�cations, the executable

subset of the PVS language should be increased to handle certain kinds of symbolic evaluations in a future

release of the tool.

Regarding tool customization, there exist currently two customization features in PVS other than the

ability to provide user-de�ned proof strategies. One rudimentary feature uses environment variables for

allowing a person to work with a text editor di�erent from Emacs, for running the tool in batch mode,

and for deciding which set of decision procedures to use. The other more powerful feature is the library

concept which supports one in arranging theories and adding them to the system, e.g., integrating a theory

for reasoning about graphs [9]. However, many key features in the current release of PVS are still �xed and

cannot be customized. This especially concerns the PVS language, including its syntax and semantics, the

type checker, and the type correctness conditions.

3. Past Experiences with Customization in PVS. In this section, we examine four academic

and real-world case studies which we conducted in the past using PVS and which required us to employ

PVS's customization features. Together the case studies cover most aspects of tool customization, including

user-de�ned proof strategies, as well as syntactic and semantic issues of the PVS language.

3.1. Case Study: SAFER. The �rst case study, which involves the analysis of an embedded controller

for NASA's Simpli�ed Aid for EVA Rescue (SAFER), aims at exploring the limits of proof automation via

semi-custom proof strategies. SAFER is a backpack propulsion system for free-
oating astronauts, intended

as a self-rescue device. It uses 24 gaseous-nitrogen thrusters to achieve six degree-of-freedom maneuvering

control. Propulsion is available either on demand, i.e., in response to hand controller inputs, or through an

automatic attitude hold (AAH) capability.

SAFER requirements were previously formalized using PVS during a NASA pilot project in formal

methods, details of which appear in the appendix to a NASA guidebook [29]. In a nutshell, the SAFER

system was speci�ed as a state machine within PVS, and its properties of interest were encoded as system

invariants which were proved by induction on the length of paths. A set of �ve property classes was identi�ed,

with matching proof schemes later devised. After re�ning the PVS proof strategies, fully automatic proofs

of 42 model properties were obtained. Many properties were expressed as a \hold-until" formula, where an

invariant holds over each sequence of states bracketed by the earliest occurrences of a trigger condition and a

termination condition [12]. An example of the custom proof strategies is shown below, where \state-tran"

is provided to prove basic state transition formulas.

(defstep state-tran (&optional (exp-fnums +) rewrites)

(let ((auto-rewr (cons 'auto-rewrite (append rewrites (constant-rewrites)))))

(then (skosimp*)
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auto-rewr (assert)

(split-disjunctions*)

(expand-rec-desc exp-fnums)

(general-rewrites)

(ground) (lift-if)

(grind)))

"(state-tran): prove state transition properties by expansion, replace & hide, grind."

"~%Invoking state transition property strategy")

The sample property shown below is a direct expression of the following requirement: \Once AAH is turned

o� for a rotational axis, it remains o� until a new AAH cycle is initiated."

rot_axis_stays_off: LEMMA

hold_until(

LAMBDA s: toggle(AAH_state(s)) = AAH_on AND NOT active_axes(AAH_state(s))(r),

LAMBDA s: NOT active_axes(AAH_state(s))(r),

LAMBDA s: toggle(AAH_state(s)) = AAH_started,

inputs)

Here, the three lambda expressions, parameterized with a state variable, specify the trigger, hold, and

until-conditions, respectively.

Although custom proof strategies worked well in this case study, the PVS user community would bene�t

from greater insight into the prover's mechanisms. In order to implement more elaborate strategies that

take function and lemma declarations into account, access to user theories would be needed. Since proof

strategies, in our point of view, provide the key for making formal techniques attractive to engineers, they

should be made as powerful and convenient as possible.

3.2. Case Study: Rewriting for User-de�ned Congruences. The second case study was devoted

to developing rewriting support for user-de�ned congruences in PVS. The PVS language provides an abstract

datatype mechanism [33] for de�ning new languages whose syntax is given in Backus-Naur Form (BNF).

The semantics of a variety of languages, such as process algebras [5], is often de�ned via a behavioral

congruence. While these congruences may be speci�ed in PVS's higher order logic, the prover does not

support rewriting for them. In fact, PVS's abilities for equational reasoning are limited to rewriting regarding

the tool's built-in notion of equality. This is in contrast to many other theorem provers, such as HOL [16]

and Isabelle [37], which provide a means for soundly introducing rewriting with respect to equations on

user-de�ned congruences. In order to circumvent this shortcoming of PVS, researchers have embedded

process-algebraic languages in PVS using uninterpreted types [4]. Although this approach opens the door for

using the prover's built-in equality and its rewriting machinery, it forces one to sacri�ce the most powerful

proof principle supported by theorem provers, namely structural induction.

Our approach to the problem was based on providing a simple, customized, and conservative proof

strategy for automating a single rewriting step with respect to a given congruence. In essence, our proof

strategy, which is supposed to be applied to the sequent containing the term to be rewritten, only uses the

transitivity property and the compositionality property of congruences. Especially, the strategy does not

rely on uninterpreted PVS terms but works with PVS's abstract datatypes instead. The rewriting rule to be

considered must be given as a lemma in PVS and serves as an argument to our strategy, which is de�ned as

follows:
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(defstep context-rewrite (equation)

(then

(use "transitivity")

(hide 2)

(use equation)

(forward-chain "congruence")

(hide -2)

(inst -1 extract-context)

(auto-rewrite "subst")

(assert)

(stop-rewrite "subst")

(inst?)

(assert)

(hide -1))

"Poor man's rewrite"

"")

Here, transitivity and congruence are lemmas in PVS stating the transitivity and congruence property

with respect to the considered congruence, respectively, and subst is a function which substitutes a context

variable (a context is a term with a designated free variable) by a concrete term. Our strategy also requires

the extraction of contexts in order to get to the subterm to which the rewrite rule equation should be

applied. As with substitutions, extracting contexts is an easy exercise which can be performed by a function

that is inductively de�ned along the structure of terms. Unfortunately, any speci�cation of such a function

needs to employ syntactic equality and, thus, cannot be implemented within the PVS language. Hence, the

function extract-context for extracting contexts is directly de�ned in Lisp and uses a notion of syntactic

equality which is de�ned internally within the PVS system. Although its de�nition is speci�c to the abstract

datatype to which the considered term belongs, it can be automatically generated whenever an abstract

datatype de�nition is introduced to PVS. However, the choice of a context may not be unique in the �rst

place, since a rewrite rule may be instantiated in several ways with respect to a given term. Thus, either user

guidance or the application of adequate heuristics is required. Since the techniques for term instantiation do

not depend on the speci�c congruence under consideration, it should be possible to re-use the sophisticated

pattern matching routines for PVS's built-in notion of equality, which are implemented as Lisp functions

within the system.

Unfortunately, the poor documentation of the internals of the PVS system prohibited us from re-using

existing routines for pattern matching and term instantiation. As �nal consequence, we did not meet our

objective, namely to develop support for rewriting with respect to user-de�ned congruences in PVS.

3.3. Case Study: Integration of the B-Method. Although PVS is a rich tool for the analysis of

formal speci�cations, it does not come with a built-in methodology for system development. In contrast,

other tools include well-developed methodologies, such as the B-method [2], but provide very limited proof

automation. Hence, the question arises whether, e.g., the B-method can be embedded in PVS in an elegant

and cost-e�ective way.

The B-method is a state-oriented method which covers the complete life cycle of software development.

It provides a uniform language, the Abstract Machine Notation, to specify, design, and implement software

systems. A speci�cation in B is composed of a set of modules which are referred to as (abstract) machines.
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Syntactically, a machine consists of several clauses which determine its static and dynamic properties. For

instance, the VARIABLE clause includes a set of variables that de�nes the state vector of the machine, the

INVARIANT clause constrains the domain of states, and the OPERATIONS clause de�nes how states may be

modi�ed. The embedding of the B-method in PVS was done structurally [28], i.e., the expression language of

B and the underlying logic of the abstract machine notation were encoded using the PVS language and the

higher-order logic of PVS, respectively. More precisely, a front-end tool, called PBS [27], was implemented

which supports the abstract machine notation in PVS. PBS works similar to a compiler as it takes an input

�le containing an abstract machine description and generates as output the corresponding embedding in the

form of a PVS theory. This was necessary since PVS does not provide the possibility to extend the syntax

of its speci�cation language to accommodate the B-notation. When compiling a theory generated by PBS,

the type checker of PVS generates type checking constraints. These correspond to proof obligations which

assure soundness requirements of the machine under consideration, e.g., one proof obligation being that the

machine's operations preserve the given invariant.

The semantic encoding of the B-method in PVS's higher-order logic maps machine states into a record

type State, whose �elds are the variables of the considered machine [6]. Machine invariants are introduced

as a constraint predicate Invariant on State:

Invariant: [State ! bool] = invariant

InvariantState: TYPE = fs:State | Invariant(s)g

where invariant is the invariant of the considered machine. Operations are then described by generalized

substitutions, a semantic structure that includes a before-after relation between states, a pre-condition pred-

icate, and a constraint which imposes the relation on states not violating the pre-condition. Generalized

substitutions may be speci�ed in PVS as follows:

Transition: TYPE = [# pre: [State ! bool], rel: [[State,State] ! bool] #]

Constraint: [Transition ! bool] =

LAMBDA (tr:Transition): (FORALL (e1,e2: State) (NOT tr`pre(e1)) ) tr`rel(e1,e2))

GeneralizedSubstitution: TYPE = ftr:Transition | Constraint(tr)g

A transition between states is implemented as a record type Transition containing a pre-condition predicate

pre and a before-after relation rel. Only transitions satisfying predicate Constraint are considered to be

generalized substitutions, i.e., GeneralizedSubstitution: TYPE = ftr:Transition | Constraint(tr)g.

As an example of a generalized substitution, consider the so-called assignment substitution x1, : : : ,xn :=

e1; : : : ; en which is encoded as

ASSIGN(f:[State ! State]): GeneralizedSubstitution =

(# pre := TRUE, rel := LAMBDA (e1,e2: State): e2 = f(e2) #)

where f is the function satisfying f(xi) = ei, for 1 � i � n, and f(x) = x, otherwise. Please note that the

encoding is constructed in a way that soundness of machines maps to type correctness.

Summarizing, although the B-machine syntax could not be integrated directly in the PVS language,

the encoding of its semantics could be done conveniently. The latter is due to the expressive type system

of PVS. In fact, the above encoding of machines makes use of subtypes and dependent types. However,

type-system features absent in PVS could have simpli�ed this task. As an example consider the situation

where one machine imports other machines. Here, the state of the importing machine includes the states of

the imported machine and their operations. This could have been elegantly expressed using record subtyping.

Moreover, the proposal in [6] of a new operator for parallel substitution in the B-method suggests the utility
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Table 3.1

Evaluation of the customization features used in the case studies

Proof Language Language

strategies syntax semantics

SAFER good n/a n/a

Process algebra poor fair poor

B-method poor fair good

DDD good poor poor

of general polymorphism in PVS. Last, but not least, it should be mentioned that specialized proof strategies

for automatically discharging certain proof obligations, which arise during the translation of B-machines

into PVS, were considered in [6]. Since the above-presented encoding strongly relies on PVS's type system,

proof strategies would have required access to terms, types, and the type-checker. Although this access

partially exists in form of internal Lisp functions of PVS, the lack of documentation let the attempt to write

customized proof strategies fail.

3.4. Case Study: Support for the DDD-Method. In the fourth case study, we have studied

how Digital Design Derivation (DDD) techniques, which provide a solid foundation for digital hardware

design [20], can be combined and enhanced with the deductive capabilities of PVS [26].

Since design derivation semantics in hardware is based on mutually recursive stream equations, a PVS

library de�ning a shallow embedding of stream equations was developed [18]. The stream library is modeled

after PVS's abstract datatype mechanism, i.e., streams are encoded as an abstract co-datatype over an

uninterpreted non-empty type constrained by axioms. The stream library provides support for co-recursive

function de�nition and proof by co-induction. Strategies were developed in order to simplify the handling of

proof obligations related to stream de�nitions and to partially automate proofs by co-induction. Moreover,

multiple levels of interaction between design derivation and PVS were explored. The requirements for the

design derivation are expressed in the PVS language. Algorithms satisfying the requirements are veri�ed

in the proof system of PVS and, then, are translated into a behavioral speci�cation for a design derivation

tool. Within such a tool, the behavioral description is re�ned into a concrete design. Re�nements outside

the scope of the derivation tool, e.g., regarding circuit optimizations that require sophisticated behavioral

reasoning, are justi�ed externally in PVS.

The approach described here has been illustrated by means of two signi�cant examples, namely a fault-

tolerant clock-synchronization circuit and an architecture for 
oating-point division. The examples show

that PVS can be used e�ectively as a veri�cation engine supporting DDD. However, limitations of PVS

were experienced, both semantically and syntactically. From a semantic point of view, a shallow embedding

reduces the potential to verify meta-results of the encoded theory. This is even worse in PVS, since the type

system does not allow quanti�cation over types. For instance, our embedding uses PVS tuples to represent

tuples of the hardware design language, but properties concerning all tuple types cannot be expressed in

our embedding. From a syntactic point of view, we were unable to create the desired syntactic forms for

declaring abstract co-datatypes, since the PVS language cannot be extended. Thus, a signi�cant portion of

the development consisted of repeatedly creating declarations of lemmas in the speci�c form necessary for

the correct operation of the strategies. A macro de�nition facility would have eased this task considerably.
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3.5. Summary of Experiences. Table 3.1 summarizes and evaluates our experiences regarding the

customization features of PVS, including proof strategies and the syntax and semantics of the speci�cation

language. The currently most useful feature to us is PVS's mechanism for custom proof strategies, although

this mechanism would bene�t from a better documentation and although it should provide (easier) access

to the proof sequent and the prover itself. Regarding the PVS language, it is fair to say that although the

language is very expressive, it does not support a means for customization and extensibility, syntactically

as well as semantically. This is a major drawback for PVS, especially when compared to other theorem

provers, such as HOL [16], Isabelle [37], and Coq [3]. All of them allow the user to modify and extend their

speci�cation languages, as needed.

Gaining theorem proving skills takes a large training investment. For formal speci�cation and veri�cation

to enter common practice, high levels of proof automation are needed, as well as the ability to interface prover

tools to languages and methodologies which are well-known to engineers. The lessons learned from the above

case studies have demonstrated that issues of tool customization and extensibility are extremely important for

the success of theorem provers in the engineering world, as well as for basic academic research in veri�cation

technology.

4. Enhancing Customization in PVS. Customization in PVS can be improved at di�erent levels.

In this section, we elaborate, component by component, on suggestions aiming towards a more customizable

PVS. We hope that this contributes to the ongoing discussion within the PVS community about how to

achieve greater customization and extensibility. The only component of PVS, we are completely happy

with, is its Emacs interface. Emacs is widely known as a customizable and extensible editor which provides

a nice integration of PVS with a variety of other applications ranging from authoring tools to Internet

applications [43].

4.1. Speci�cation language. As mentioned above, the speci�cation language of PVS is essentially a

strongly typed functional language enriched with operators taken from higher-order logics, such as quanti�ers

over general objects [34]. However, the language is not only targeted towards axiomatic and declarative

speci�cation styles, but it is expressive enough to encode other styles, including algebraic speci�cations [33],

tabular speci�cations [31], and operational speci�cations [31].

The support for algebraic and tabular speci�cations in PVS, however, is particular. These kinds of

extensions require modi�cations to the grammar of the PVS language, and a deep knowledge of the PVS

internals, which is currently only available to developers at SRI International but not to the public research

community. In view of the �xed grammar of the PVS language, the support of a new syntax usually

requires the development of an external parser, such as PBS [27] in case of the above mentioned B-method.

Additionally, super�cial string manipulation may be wired at the Emacs level. Unfortunately, these solutions

are far from optimal since they suggest the need for decompilers, which are known for being hard to develop.

Alternatively, one may deal with compiler-generated encodings. Since such encodings hardly re
ect the

original speci�cations, their formal analyses are di�cult. Macro expansions would be a simple way to mimic

the syntax of external languages. In PVS they should be implemented in a way that the components of

the system can refer back to the unexpanded language. Therefore, users would not have to change notation

when switching back and forth between PVS and other tools.

Another challenging issue is the development of a mechanism to describe sub-languages of PVS. For

instance, it might be helpful to restrict the speci�cation language to consider only (i) �nite types, in order to
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be able to detect when, e.g., model checking [15] may be applicable, (ii) strategy constructs, when integrating

the strategy language within the PVS language as will be discussed in Section 4.3, (iii) an executable fragment,

e.g., for driving simulations, or (iv) a decidable theory, which may allow one to use more e�cient decision

procedures. An implementation of this mechanism via the type checker is suggested in the next section.

4.2. Type Checker. Extensions to the type checker of PVS, and in general to the type system, raise

very delicate questions about the semantics of the system [35, 41]. For example, a naive extension of

subtyping to consider record subtyping, such that �elds may be added to records in the sense of object-

oriented inheritance mechanisms, could render the system inconsistent. Indeed, the current set-theoretic

semantics of PVS types, where subtypes have the meaning of subsets, is incompatible with most of the

semantic approaches to inheritance in object-oriented languages [1, 24]. An intermediate solution to record

inheritance in PVS is possible via the CONVERSION operator included in the PVS language. A conversion is

a function that casts objects from one type to another. Conversions can be declared by the user, and the

prover automatically uses them whenever necessary. However, as this latter mechanism is not controlled by

the user, surprising errors may occur.

Polymorphism in PVS is limited to parameterization of theories, e.g., the theory \generic[T:TYPE]:

THEORY BEGIN : : : END generic" speci�es a family of theories with respect to the abstract type T. However,

the declaration \polymorphism(T:TYPE):A = : : : " is not admitted by the system. We are not aware of

the technical implications of general polymorphism in the type theory of the system, but this feature would

be very handy in order to elegantly integrate other notations in PVS. In fact, semantic embeddings usually

require meta-level encoding, for which polymorphism is a prerequisite.

Since constraining a theory is safe with respect to consistency, adding constraints to the PVS language

might be useful to apply specialized algorithms on certain domains. For example, the type checker could be

parameterized such that fragments of the language are recognized. Finally, the mechanism, which uses the

type checker to automatically discharge type checking conditions, should be controllable by the user.

4.3. Proof Checker & Ground Evaluator. In order to write more powerful proof strategies, well-

documented access to the proof context and the proof environment is needed. The proof context includes

terms, types, sequents, theories, and type checking conditions, with currently only the access to proof sequents

being documented [35]. Types contain information that can be helpful to decide which decision procedures

are applicable in the considered proof situation. Access to theories is sometimes needed for looking up the

availability of lemmas, and access to type checking conditions might allow one to automatically discharge

them as they arise. The proof environment includes decision procedures, the theorem prover, and the type

checker. Decision procedures need to be accessible if one wants to write, e.g., specialized versions of the

strategy grind. In order to be able to interface PVS to external tools, the theorem prover itself must be

accessible. Access to the type checker is needed when creating new PVS terms within proof strategies, such

that new terms can be safely introduced to the prover. Finally, for the strategy language one might think of

two advancements over the current speed-e�cient standard which uses Lisp functions. A more elegant and

still e�cient solution would be to provide an Application Programming Interface (API), such that external

languages can be used for writing strategies. Thus, the PVS prover would become controllable from external

tools. The most elegant solution, which also addresses the question of soundness of proof strategies, would

be to include the strategy language within the PVS language by introducing new language constructs and

some pre-de�ned functions.
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Regarding the support for rewriting with respect to user-de�ned congruences, user control of how the

rewriting machinery and especially the pattern matching algorithm work is required. This may also help

to avoid the problem of broken proofs when upgrading to newer versions of PVS. In order to achieve this

goal, either documented access to the internals of PVS must be granted or, ideally, PVS needs to allow one

the installation of rewrite rules parameterized with the speci�c congruence for which those rules are valid.

Moreover, in the case of user-de�ned congruences, one also wishes to add and invoke new decision procedures

with respect to the congruence of interest.

The ground evaluator introduced with PVS Version 2.3 should be considered an experimental feature,

as its �nal functionality is still under discussion by its developers. Thus, it is too early to make detailed

suggestions for enhancements. However, we hope that the evaluator will be extended to symbolic evaluation

of speci�cations, i.e., those containing non-concrete data. This would enable the animation of a larger and

more interesting class of speci�cations. The evaluator, ground or symbolic, should also be integrated with

the other components of the system, namely the PVS language, the type-checker, and the proof-checker;

right now, it is pretty much a stand-alone feature.

5. Conclusions. We conclude by suggesting several short-term and long-term goals for improving

PVS's customization and extensibility, respectively. We hope that the PVS developers at SRI International

will adopt some of these goals for future evolutions of their tool.

In the short run, a documentation of the PVS architecture as implemented in Lisp [44] using the Common

Lisp Object System [10], of its interfaces, of its central classes, and of its objects should be provided.

Moreover, an API for accessing the proof context and also the type checker within proof strategies should be

developed. Together, this would enable all PVS users { not only those working at or visiting SRI International

{ to integrate various formal methodologies in PVS, e.g., for prototypically experimenting with heterogeneous

veri�cation techniques [40]. We believe, that the above suggestions will lead to a customizable PVS which

allows for (i) increased automation via sophisticated proof strategies, (ii) tackling formalizations that are

currently prohibited, and (iii) the division of labor for solving real-world veri�cation problems. The latter

point is especially important in practice, since it enables a more e�cient conduct of projects by allowing a

cleaner task separation between problem domain experts and PVS prover experts.

API for context API for environment

PVS core

External tools

extensions
Language

Fig. 5.1. Architecture of an extensible PVS

A truly extensible PVS, however, must not only be modular by allowing external tools to access the core

of PVS via suitable APIs for both proof context and proof environment, but it must also support language

extensions, syntactically as well as semantically. Each module customizing PVS's language must essentially

extend the PVS core and must also provide an API in order for the new functionality to become available

externally. An example architecture re
ecting these ideas of extensibility is depicted in Figure 5.1. One may

think of even more ambitious architectures, e.g., a more federated one, in which several tools can equally

interact with each other. On top of the advantages of a modular PVS, an extensible veri�cation system has

the ability to take advantage of new theories and techniques as they occur in the �eld, as well as to merge

the best of the many existing Formal Methods technologies.
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Finally, we would like to mention that we are aware of the very delicate theoretical and technical issues

behind our proposal. However, a more open PVS architecture is a prerequisite for research groups outside

SRI International for being able to make more useful contributions to the PVS community. While the PVS

language remains powerful and elegant, analysis techniques within the Formal Methods domain are becoming

increasingly heterogeneous, drawing from a wide spectrum of specialized ideas. PVS would make an ideal


agship, but it cannot be the whole 
eet. It would be wise to out�t PVS with a highly 
exible means of

cooperation, so that we all might enjoy a smoother cruise.
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